数理逻辑文献符号对比

Last Updated at 2018-09-19T11:48:59+08

据我所知,中学数理化各自学科内的教材、教辅、试卷所用的符号相当统一$^*$,然而离开它们到了广阔天地,各学科内的符号就有不同程度的混乱。有感于“数理逻辑=﹥ ,|-这两个符号有什么区别?”这类问题的存在,以及导致这类问题难以讲清的一个原因——逻辑符号不统一,我决定整理个表格。还没整完呢!

(* 或许该加上定语“同一时期”。)

(那些同时有 PDF 和 HTML 版本的文档是怎么维护的?像 https://docs.oracle.com/javase/specs/index.html 和 https://wiki.haskell.org/Language_and_library_specification)

语形、形式演算、证明论

约定一些书名缩写:

证明论书籍里使用的符号对比
使用范围 符号含义 SPT 里的写法 BPT2 里的写法 其他见过的写法
逻辑的形式语言 蕴含联结词 $\supset$ $\to$
矢列演算 矢列前后件分隔符
(the separator between the antecedent and the succedent of a sequent)
$ \Rightarrow $ $ \Rightarrow $ $\vdash$(我难以接受)
形式系统的元语言 (语法)推导,语法后承 $\vdash$ $\vdash$

语义和模型论

满足:$V \models \phi$,左边模型,右边公式;

满足的“推广”:$V \models \Sigma$,左边模型,右边公式集;

语义后承:$\Gamma \Vdash \phi$,左边公式集,右边公式;

俞:有的文献里,$\models$ 既表示满足,又表示语义后承。这些文献有时用 $\Vdash$ 表示另一个逻辑里的满足和语义后承,如果它谈论多个逻辑的话。

Related Work

1. Open Logic Project 的 chapter 5.2 Propositional Formulas 对符号做了一点总结:

You may be familiar with different terminology and symbols than the ones we use above. Logic texts (and teachers) commonly use either ∼, ¬, and ! for “negation”, ∧, ·, and & for “conjunction”. Commonly used symbols for the “conditional” or “implication” are →, ⇒, and ⊃. Symbols for “biconditional,” “bi-implication,” or “(material) equivalence” are ↔, ⇔, and ≡. The ⊥ sym- bol is variously called “falsity,” “falsum,”, “absurdity,”, or “bottom.” The ⊤ symbol is variously called “truth,” “verum,”, or “top.”

2. 还是 About | Open Logic Project,指出该项目的特色之一是 Configurable

Typesetting and notation are configurable as much as possible, so that individual preferences can easily be accommodated. For instance, users can choose—without having to alter the text directly—arrow (如 →, ⇒) or horseshoe (即 ⊃) for the conditional symbol, but also between Latin and Greek letters for formulas, and even between “formula” and “wff” (well-formed formula) as the term used throughout the text.

Tools

http://detexify.kirelabs.org/classify.html 画符号找 LaTeX 包和指令

手动维护的反向链接

以后本页 URL 要变的话,能用得着。