Last Updated at 2018-09-19T11:48:59+08
据我所知,中学数理化各自学科内的教材、教辅、试卷所用的符号相当统一$^*$,然而离开它们到了广阔天地,各学科内的符号就有不同程度的混乱。有感于“数理逻辑=﹥ ,|-这两个符号有什么区别?”这类问题的存在,以及导致这类问题难以讲清的一个原因——逻辑符号不统一,我决定整理个表格。还没整完呢!
(* 或许该加上定语“同一时期”。)
(那些同时有 PDF 和 HTML 版本的文档是怎么维护的?像 https://docs.oracle.com/javase/specs/index.html 和 https://wiki.haskell.org/Language_and_library_specification)
约定一些书名缩写:
使用范围 | 符号含义 | SPT 里的写法 | BPT2 里的写法 | 其他见过的写法 |
---|---|---|---|---|
逻辑的形式语言 | 蕴含联结词 | $\supset$ | $\to$ | |
矢列演算 | 矢列前后件分隔符 (the separator between the antecedent and the succedent of a sequent) |
$ \Rightarrow $ | $ \Rightarrow $ | $\vdash$(我难以接受) |
形式系统的元语言 | (语法)推导,语法后承 | $\vdash$ | $\vdash$ |
满足:$V \models \phi$,左边模型,右边公式;
满足的“推广”:$V \models \Sigma$,左边模型,右边公式集;
语义后承:$\Gamma \Vdash \phi$,左边公式集,右边公式;
俞:有的文献里,$\models$ 既表示满足,又表示语义后承。这些文献有时用 $\Vdash$ 表示另一个逻辑里的满足和语义后承,如果它谈论多个逻辑的话。
1. Open Logic Project 的 chapter 5.2 Propositional Formulas 对符号做了一点总结:
You may be familiar with different terminology and symbols than the ones we use above. Logic texts (and teachers) commonly use either ∼, ¬, and ! for “negation”, ∧, ·, and & for “conjunction”. Commonly used symbols for the “conditional” or “implication” are →, ⇒, and ⊃. Symbols for “biconditional,” “bi-implication,” or “(material) equivalence” are ↔, ⇔, and ≡. The ⊥ sym- bol is variously called “falsity,” “falsum,”, “absurdity,”, or “bottom.” The ⊤ symbol is variously called “truth,” “verum,”, or “top.”
2. 还是 About | Open Logic Project,指出该项目的特色之一是 Configurable:
Typesetting and notation are configurable as much as possible, so that individual preferences can easily be accommodated. For instance, users can choose—without having to alter the text directly—arrow (如 →, ⇒) or horseshoe (即 ⊃) for the conditional symbol, but also between Latin and Greek letters for formulas, and even between “formula” and “wff” (well-formed formula) as the term used throughout the text.